Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Abdeljalil Assoud and Holger Kleinke*

Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Correspondence e-mail: kleinke@uwaterloo.ca

Key indicators

Single-crystal X-ray study T = 298 KMean σ (Te–Sc) = 0.000 Å R factor = 0.031 wR factor = 0.089 Data-to-parameter ratio = 33.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 21 November 2005 Accepted 13 December 2005

Online 21 December 2005

The sesquitelluride Sc₂Te₃

Scandium sesquitelluride, Sc_2Te_3 , was obtained as a side product by reacting the elements Sc, Ni and Te at 1073 K in an evacuated silica tube. This is the third modification of Sc_2Te_3 , which crystallizes in the orthorhombic space group *Fddd* and adopts the Sc_2S_3 structure type [Dismukes & White (1964). *Inorg. Chem.* **3**, 1220–1228]. The structure consists of edgesharing (slightly distorted) $ScTe_6$ octahedra and may be regarded as a defect variant of the NaCl type.

Comment

Recently, we reported the crystal structure of Yb₂Se₃, which crystallizes in the Sc₂S₃ structure type (Assoud & Kleinke, 2003). The chalcogenides Ln_2Q_3 (Ln = lanthanide, Q = chalcogen) adopt different structure types depending on the radius of the lanthanide. The large lanthanide chalcogenides prefer the defect variant of the Th₃P₄ type (Mauricot *et al.*, 1995), whereas the smaller ones crystallize in the α -Al₂O₃ (El Fadli *et al.*, 1994) and Sc₂S₃ types (Dismukes & White, 1965; Flahaut *et al.*, 1965).

In the system Sc–Te, several binaries have been synthesized and their crystal structures characterized, *viz.* ScTe, Sc_{2/3}Te (Men'kov *et al.*, 1961), Sc₂Te₃, Sc_{2.3}Te₃ (White & Dismukes, 1965), Sc₂Te (Maggard & Corbett, 1997), Sc₉Te₂ (Maggard & Corbett, 2000) and Sc₈Te₃ (Maggard & Corbett, 1998). The first modification of Sc₂Te₃ was reported, on the basis of X-ray powder diffraction data (Men'kov *et al.*, 1959), to exhibit the γ -Al₂O₃ structure type. The second, rhombohedral modification was found by reacting the mixture of elements at the same reaction temperature (1325 K) but using chemical transport reactions. This modification was described as comprising alternating regions of NaCl and NiAs structure types (White & Dismukes, 1965).

Our single-crystal structure study on Sc_2Te_3 shows a third modification, which adopts the Sc_2S_3 type (Dismukes & White, 1964). This seems to be the low-temperature form, as we have routinely observed it at reaction temperatures below 1100 K, regardless of whether nickel was present in the reaction mixture or not. This structure is a distorted deficient variant of the NaCl type, forming a 12-fold supercell ($a = 2^{1/2}a, b = 2b, c = 3 \times 2^{1/2}c$). A detailed description of the Sc_2S_3 type and its relation to NaCl was given by Dismukes & White (1964). The distortion can be seen in, for example, the shifts of the Te atoms from the ideal position with x = 0.375 to x = 0.37907 (2) (Te1) and x = 0.375092 (12) (Te2). The Sc–Te bond lengths vary slightly around 2.91 Å (Table 1), and the Te–Sc–Te angles deviate up to 2° from the ideal octahedral angles.

Experimental

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved Sc_2Te_3 was obtained from a reaction of elemental scandium, nickel and tellurium in the ratio 1:4:7. The mixture was heated at 1073 K

inorganic papers

over a period of 3 d, annealed at 923 K for 5 d, and then cooled slowly (5 K h^{-1}) to room temperature. The X-ray powder diagram obtained from the ground sample (utilizing the INEL powder diffractometer with position-sensitive detector) revealed the presence of Sc₂Te₃, NiTe and NiTe₂. Sc₂Te₃ crystallized in the form of black block-shaped crystals.

Mo $K\alpha$ radiation

reflections

 $\mu = 16.73 \text{ mm}^{-1}$

 $\theta = 3.2 - 30.0^{\circ}$

T = 298 (2) K

Block, black

Cell parameters from 4570

 $0.02 \times 0.02 \times 0.01 \ \mathrm{mm}$

Crystal data

Sc₂Te₃ $M_r = 472.72$ Orthorhombic, *Fddd* a = 8.2223 (6) Å b = 11.6292 (9) Å c = 24.6085 (18) Å V = 2353.0 (3) Å³ Z = 16 $D_x = 5.338 \text{ Mg m}^{-3}$

Data collection

858 independent reflections
672 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.030$
$\theta_{\rm max} = 30.0^{\circ}$
$h = -11 \rightarrow 11$
$k = -16 \rightarrow 16$
$l = -34 \rightarrow 33$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F^2) + (0.0244P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.031$	where $P = (F^2 + 2F^2)/3$
$wR(F^2) = 0.089$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.41	$\Delta \rho_{\rm max} = 1.27 \text{ e } \text{\AA}^{-3}$
858 reflections	$\Delta \rho_{\rm min} = -2.84 \text{ e } \text{\AA}^{-3}$
26 parameters	Extinction correction: SHELXL97
*	Extinction coefficient: 0.00165 (5)

Table 1		
Selected	bond dista	nces (Å).

Sc1-Te1		2.9047 (4)	Sc2	-Te2 ⁱⁱⁱ	2.896	50 (4)	
Sc1-Te2 ⁱ		2.9091 (2)	Sc2	-Te1 ⁱ	2.907	75 (2)	
Sc1-Te2 ⁱⁱ		2.9275 (4) Sci	Sc2	Sc2-Te2		2.9084 (4)	
Symmetry codes: $-x + \frac{3}{4}, y, -z + \frac{3}{4}$.	(i)	$-x+\frac{1}{2},-y,-$	$z + \frac{1}{2};$	(ii)	$-x + \frac{3}{4}, -y + \frac{1}{4}, z - \frac{1}{2};$	(iii)	

The highest peak is located 0.06 Å from Sc1 and the deepest hole 0.66 Å from Te1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; method used to solve structure: coordinates taken from the isotypic Sc_2S_3 compound (Dismukes & White, 1964); program(s) used to refine structure: *SHELXL97*

Figure 1

The crystal structure of Sc_2Te_3 , with anisotropic displacement ellipsoids drawn at the 90% probability level.

(Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1999); software used to prepare material for publication: *SHELXL97*.

Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

- Assoud, A. & Kleinke, H. (2003). Acta Cryst. E59, i103-i104.
- Bergerhoff, G. (1999). DIAMOND. Version 2.1a. Bonn, Germany.
- Bruker (1999). SAINT. Version 7.02. Bruker AXS, Madison, Wisconsin, USA.
- Bruker (2000). SMART. Version 5. Bruker AXS, Madison, Wisconsin, USA.
- Dismukes, J. P. & White, J. G. (1964). Inorg. Chem. 3, 1220-1228.
- Dismukes, J. P. & White, J. G. (1965). Inorg. Chem. 4, 970-973.
- El Fadli, Z., Lemoine, P., Guittard, M. & Tomas, A. (1994). Acta Cryst. C50, 166–168.
- Flahaut, J., Laruelle, P., Pardo, M. P. & Guittard, M. (1965). Bull. Soc. Chim. Fr. pp. 1399–1404.
- Maggard, P. A. & Corbett, J. D. (1997). Angew. Chem. Int. Ed. Engl. 36, 1974– 1976.
- Maggard, P. A. & Corbett, J. D. (1998). Inorg. Chem. 37, 814-820.
- Maggard, P. A. & Corbett, J. D. (2000). J. Am. Chem. Soc. 122, 838-843.
- Mauricot, R., Gressier, P., Evain, M. & Brec, R. (1995). J. Alloys Compd, 223, 130–138.

Men'kov, A. A., Komissarova, L. N., Simanov, Yu. P. & Spicyn, V. I. (1959). Dokl. Akad. Nauk SSSR, 128, 92–94. (In Russian.)

- Men'kov, A. A., Komissarova, L. N., Simanov, Yu. P. & Spicyn, V. I. (1961). Dokl. Akad. Nauk SSSR, 141, 364–367. (In Russian.)
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- White, J. G. & Dismukes, J. P. (1965). Inorg. Chem. 4, 1760–1763.